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Abstract. The AC-excited hydrogenerator (ACEH) is a novel type of hydraulic 
generation system. Concern about its integrative control strategy is increasing, 
owing to the features of uncertain and nonlinear as well as parameters coupling 
and time-variation for three parts of water flux, hydroturbine and generator. A 
cascade-connected self-adaptive fuzzy-neural network control strategy is 
proposed, which the former controller uses a self-tuning fuzzy algorithm with 
the intelligent weight function rulers, the latter adopts a self-adaptive neural 
network controller based on dynamical coupling characteristics of controlled 
plants. By comparison with traditional PID control, Simulation results have 
shown that this hydrogenerators system appears good robustness against load 
disturbance and system parameters uncertainty.  

1   Introduction 

The wide range of variable speed constant frequency (VSCF) operation, the capability 
of active and reactive power control make the AC-excited generator (ACEG) 
attractive for variable speed hydroelectric generators as well as wind power 
conversion system [1-4]. The stator of ACEG connects the grid directly and provides 
for variable speed operation by using a partially rated converter on the rotor side, 
which brings to some superior performances such as good power system stability, 
VSCF generation, stator active and reactive power regulation independently [1-6]. So 
the AC-excited hydrogenerator (ACEH) system can be operated round the optimal 
unit speed of hydroturbine by some suitable control strategies, when the water level or 
water flux is changed. The hydraulic efficiency and power system stabilization can be 
improved. The typical connection of ACEH system can be seen in [1,2,4].  
The ACEH system is a more complex system including water, hydroturbine and 
generator portion as well as hydrotubine governing controller and generator excited 
system. Considering the water hammer effect, ACEH system has some distinct 
characteristics such as the system’s nonlinear and great inertia, parameters variation, 
multi-variable characteristics. In order to develop the excellent operational 
performances of this hydrogenerator system,  it is very important and necessary to 



study its comprehensive robust control strategies. Some methods and techniques have 
been researched to solve the ACEG excited control problem. Some of these methods 
are traditional vector control techniques based on stator flux or air-gap flux oriented 
frame [1-3], it is difficult to achieve the robust and stable control performances when 
system parameters are uncertain. To overcome the aforementioned drawbacks, the 
fuzzy logical control is also proposed and applied in [6], even though this kind of 
method is independent of the accurate plant models, it neglects the influence of the 
prime mover such as hydroturbine governing system. 
To achieve excellent operational characteristics of ACEH system, a 
cascade-connected self-adaptive fuzzy-neural network (FNN) control strategy is 
proposed in this paper. Robust characteristics of ACEH system is studied and 
simulated with Matlab/Simulink. 

2   Design of Fuzzy-Neural Network Controller 

It is well known that the neural network technique has emerged as an attractive and 
powerful tool to control a wide class of complex nonlinear dynamic systems [7-13]. 
Considering the features of robustness and rapid convergence of fuzzy control [7,9], a 
novel approach of cascade–connected FNN controller is presented based on the 
dynamical coupling algorithm, the block diagram of which is shown in Fig. 1. 
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Fig. 1 Block diagram of adaptive FNN control system  
This controller structure is made up of self-tuning fuzzy controller and self-adaptive 
neural network decoupling controller,  the former is crucial to the system dynamical 
property, the latter is impact on the multivariable decoupling performances [8]. In the 
formerly fuzzy controller, the output vectors u0={u1

0, u2
0,… , un

0}are obtained by the 
error vectors e={e1, e2,… , en}. In the neural network controller, the output vectors 
u={u1, u2,… , un}are achieved by the weights adaptation law, which is based on 
estimating the dynamical multivariable coupling property of the controlled plants. 

2.1   Algorithm of Self-tuning Fuzzy Controller 

In the traditional fuzzy control, the control rules and fitness function play important 
role in the system performances; however, the appropriate control rules and fitness 
function are difficult to achieve for the system uncertainty and complexity [9,11,13]. 
Hence, the fuzzy algorithm is adopted based on continuous intelligent weight function, 
the structure block diagram of the single loop is shown in Fig. 2. 
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Fig. 2 Block of fuzzy controller with continuous intelligent weight functions  
The fuzzy values of error e(k) and differential errorΔe(k) are acquired as follows 
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Where KE is error coefficient, KC is differential error coefficient. 
The self-tuning control rule is presented by the two-weight coefficients eα , cα   
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Where ε is a discretionary small positive constant. 
The self-tuning rule of fuzzy controller is updated as follows [13] 

CCe EEU αα +=∆                          (3) 
The output of the self-tuning fuzzy controller is obtained as follows 

UKUKku IUi ∆∑⋅+∆=)(0                     (4) 

Where KU is proportional coefficient, KI is integral coefficient. 

2.2   Self-adaptive neural network controller 

Three input-output structure of the self-adaptive neural network controller is shown in 
Fig. 3, the output vector of neural network controller is given as follows. 
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Where ωij(k) is weight value, ui
0(k) is output of the above fuzzy controller.  

Considering the minimization of the mean square error between the factual output and 
the desired output, the system cost function is defined as follows  
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The weights of the neural network controller is updated as follows: 
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Where η is the learning-rate parameter;
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input to the ith output value. 

3  FNN Control for AC-Excited Hydrogenators System 

3.1   Description of Control System for AC-Excited Hydrogenerators 

In order to control independently active and reactive power for this hydrogenerator, 
the stator active power P1, active power Q1 and slip s are  considered as input variables 
of the controller, respectively, the excited voltage components Urd, Urq based on 
synchronous rotational frame and hydrotubine regulation valve u are taken as output 
variables. The proposed FNN control system for ACEH system is shown as Fig. 3. 
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Fig. 3 Block of FNN control for AC-excited hydrogenerator system 
As it can be seen, IFC1, IFC2 and IFC3 denote self-tuning fuzzy controller based on 
intelligent weight function, respectively, the mathematical models of ACEH are 
described in [2,4], where P1*, Q1* and s* denote the given value of stator active power, 
stator reactive power and slip, respectively. 

3.2   Simulation 

In order to testify the FNN control quality of the ACEH system, the operation 
performances of robustness against load disturbance and system parameters variation 
and uncertainty are simulated, respectively. The base region of controlled variables 
are set with [-1,1] in fuzzy controller, the initial learning-rate of neural network 
controller is set to 0.01, the initial weights are given as );(1)0( jiij ==ω  

)(0)0( jiij ≠=ω . The main parameters of ACEH are described in Table 1. 



Fig. 4 Characteristics of against load disturbances 

Table 1. Main parameters of AC-excited hydrogenerator systems 

Main parameters Value 
stator resistance Rs (p.u.) 0.00706 
rotor resistance Rr (p.u.) 0.005 
stator leakage inductance Xs (p.u.) 0.171 
rotor leakage inductance Xr (p.u.) 0.156 
mutual inductance Xm (p.u.) 2.9 
system moment of inertia H (s) 5.04 
time constant of hydraulic pressure driver system Ty (s) 5 
time constant of water flux inertia Tw (s) 2 

A. Robustness against Load disturbance  
The water flux variation and grid power 
fluctuations can be considered as load 
disturbance ∆Pm. When ∆Pm is 0.3 p.u. 
from the time of 2 to 3 seconds, system 
operational performances are shown 
and compared as Fig. 4. (The thick real 
curve denotes the simulation result of 
the FNN control, while the thin real 
curve denotes it of the traditional PID). 
As it can be seen that the generating 
system has good robust ability with the 
FNN control, however it occurs more 
fluctuation of power and speed by 
using the conventional PID control. 

B. Robustness against parameters variation  
The rotor resistance value is changed to 2 times with the original value in ACEG 
models, which is kept by original value in system control models , the active power 
regulation characteristics with rotor resistance variation is shown in Fig. 5. In the 
same way, when the constant time of water flux inertia Tw is set to 10 times with the 

original value, the active power regulation is also shown in Fig. 6. From the two 
figures, it can be seen that the ACEH system performance is seldom affected by the 
generator parameters variation or water flux time constant uncertainty by using FNN 

Fig. 6 Robustness when Tw is uncertain Fig. 5 Robustness when Rr is uncertain 



control, however the system occurs more fluctuation or unstable by using the 
conventional PID control, which is usually dependent on accurate plants models [13]. 

4   Conclusion 

Based on the complex characteristics of uncertain and nonlinear as well as parameters 

coupling and time -variation for ACEH system, the integrated control strategies of a 

cascade-connected self-adaptive FNN is proposed in this paper. The strong robustness 

is achieved by simulation, no matter what is the load disturbance and uncertainty of 

generator rotor resistance parameter or water flux time constant. 
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